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Introduction
A meteorological drought is a natural hazard with far-reaching consequences 
that impacts water availability, ecosystems, agriculture, and economies on a 
global scale (Katipoğlu, 2023; Yang, 2010). Drought can be defined as a preci-
pitation deficit compared to an average situation for a specific period (Yihdego 
et al., 2019). Drought is considered a creeping disaster, as it propagates from 
one hydrological system to another, affecting the entire hydrological cycle. This 
makes understanding droughts challenging as it not only depends on the at-
mospheric conditions, but also on the hydrological processes that feed moistu-
re to the atmosphere and cause the storage of water and runoff to streams (Van 
loon, 2015). Human activities, such as pumping groundwater from wells for 
irrigation and/or drinking water production, can exacerbate drought.

Droughts are often classified into four categories or stages (Mishra and Singh, 
2010, and Figure 1):

•	� Meteorological drought: a period of insufficient precipitation to balance 
evapotranspiration, resulting in a large precipitation deficit.

•	� Soil moisture drought: a period with declining soil moisture, affecting crops 
and vegetation.

Drought indices are valuable tools for assessing drought conditions across regions, as 

they allow for the comparison of anomalies over time and space and they can be calcu-

lated over various timescales. The drought portal (https://droogteportaal.nl) is an online 

platform providing historical, near-real-time and, for some variables, forecasted data 

on precipitation, evapotranspiration, soil moisture, groundwater, and discharge in the 

Netherlands. The portal currently features three drought indices: precipitation, precipitati-

on deficit, and groundwater. Drought indices for soil moisture and streamflow are not yet 

implemented, but they might be added in the future. In order to investigate whether the 

addition of soil moisture and streamflow drought indices provides additional value, this 

article outlines the potential of adding the Standardized Soil Moisture Index (SSMI) and the 

Standardized Streamflow Index (SSI) to the portal as well as the challenges related to data 

availability and handling missing values.
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• 	�Hydrological drought: Lowering groundwater tables followed by decreased 
streamflow in rivers and streams compared to the normal situation.

•	� Socio-economic drought: insufficient water supply to satisfy the water de-
mand.

In recent years, particularly in 2018, 2019, 2021, and 2022, the Netherlands 
has experienced severe droughts (de Gier, 2021). These droughts led to nu-
merous negative impacts on the environment and society. Consequently, the 
government began to set limits in terms of water use (van den Eertwegh et al., 
2019; 2021). Climate change is expected to cause more frequent and prolon-
ged droughts in the future (van Dorland et al., 2023). Therefore, it is essential 
to understand droughts and their severity and, if possible, effectively mitigate 
the negative effects.

The evaluation of drought relies on understanding the factors that cause it and 
its impacts. Droughts are primarily assessed using parameters such as intensi-
ty, severity, duration, and areal extent. These parameters were integrated into 
drought indices (Eden, 2012). These drought indices are valuable indicators 
of drought conditions in various regions of the world (Tijdeman et al., 2020; 
Svensson et al., 2017; Svoboda et al., 2016).

In response to the growing threat of droughts in the Netherlands, KnowH2O 
with partners KWR, Stella Spark, and Hoefsloot Spatial Solutions developed the 
drought portal (https://droogteportaal.nl), which is currently supported by 
InformatieHuis Water (IHW). This online platform provides historical and near-
real-time information on drought conditions in the Netherlands. Initially, it was 
focused on the high sandy soils of the South, Central, and East of the Nether-
lands, but now it extends to almost the entire country. The drought portal 
aims to offer an overview of these conditions by enabling water authorities and 

 

streamflow in rivers and streams compared to the normal situation. 
• Socio-economic drought: insufficient water supply to satisfy the water 
demand. 
 
In recent years, particularly in 2018, 2019, 2021, and 2022, the Netherlands 
has experienced severe droughts (de Gier, 2021). These droughts led to 
numerous negative impacts on the environment and society. Consequently, 
the government began to set limits in terms of water use (van den Eertwegh 
et al., 2019; 2021). Climate change is expected to cause more frequent and 
prolonged droughts in the future (van Dorland et al., 2023). Therefore, it is 
essential to understand droughts and their severity and, if possible, 
effectively mitigate the negative effects. 

Figure 1:Theoretical progradation of drought through different stages of the hydrological 
system obtained from (Van loon, 2015).  

 

The evaluation of drought relies on understanding the factors that cause it 
and its impacts. Droughts are primarily assessed using parameters such as 
intensity, severity, duration, and areal extent. These parameters were 
integrated into drought indices (Eden, 2012). These drought indices are 
valuable indicators of drought conditions in various regions of the world 
(Tijdeman et al., 2020; Svensson et al., 2017; Svoboda et al., 2016). 
 
In response to the growing threat of droughts in the Netherlands, KnowH2O 
with partners KWR, Stella Spark, and Hoefsloot Spatial Solutions developed 
the drought portal (https://droogteportaal.nl), which is currently 
supported by InformatieHuis Water (IHW). This online platform provides 
historical and near-real-time information on drought conditions in the 
Netherlands. Initially, it was focused on the high sandy soils of the South, 
Central, and East of the Netherlands, but now it extends to almost the 
entire country. The drought portal aims to offer an overview of these 
conditions by enabling water authorities and water users’ access to vital 
data, forecasts, and analyses. It thereby serves as a tool to support water 
managers in their operational (short-term) and strategic (long-term) 

Figure 1    Theoretical progradation of drought through different stages of the hydrological 

system obtained from (Van loon, 2015). 



23

water users’ access to vital data, forecasts, and analyses. It thereby serves as a 
tool to support water managers in their operational (short-term) and strategic 
(long-term) decision-making process to mitigate the impacts of droughts. The 
drought portal uses standardized indices to provide information on the drought 
condition for each measurement location. Standardized indices show the devia-
tion of a hydrological variable (e.g., precipitation and groundwater levels) from 
its normal conditions, and enable a comparison of the characteristics of histori-
cal drought events over time.

To date, three indices have been implemented in the drought portal, which are 
the Standardized Precipitation Index (SPI), Standardized Precipitation minus 
Evapotranspiration Index (SPEI), and Standardized Groundwater Index (SGI) (van 
Huijgevoort et al., 2022). Drought indices for soil moisture and streamflow, 
however, remain absent. These indices are crucial for assessing drought condi-
tions and the progression from surface water to the subsurface to the ground-
water systems. One reason for their absence is the limited availability and 
quality of long-term data on streamflow and soil moisture, which are needed to 
calculate reliable drought indices. This study seeks to address this issue by ad-
ding new functionality to the drought portal, introducing standardized indices 
for soil moisture (SSMI) and streamflow (SSI).

Material and Methods
This study employs hydrological models to address the challenges of missing 
data and insufficient time series lengths, aiming to enhance data series comple-
teness and mitigate the observational dataset limitations. It focuses on calcula-
ting two standardized indices: The Standardized Soil Moisture Index (SSMI) and 
the Standardized Streamflow Index (SSI). The methodology, as shown in Figure 
2, begins with the setup of the Hydrus-1D and WALRUS models and proceeds to 
the calculation of the SSMI and SSI indices, with additional details provided in 
the subsequent subsections.

Figure 2    Schematic overview of soil moisture and the streamflow indices calculations.
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Hydrus-1D model 
For this project, soil moisture monitoring locations were used that were 
part of the “Droogte zandgebieden” project (van den Eertwegh et al., 
2019). The volumetric soil moisture sensors were installed as shown in 
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Hydrus-1D model
For this project, soil moisture monitoring locations were used that were part 
of the “Droogte zandgebieden” project (van den Eertwegh et al., 2019). The 
volumetric soil moisture sensors were installed as shown in Figure 3 for each 
location (van Dam and Gooren, 2021). To determine the Standardized Soil 
Moisture Index (SSMI), a time series record of around 30 years of soil moisture 
content data is needed. As the longest soil moisture time series available on the 
Drought Portal spans only five years, which is insufficient for calculating the SS-
MI, a simulated 30-year time series generated by a Hydrus-1D model was used 
instead (Šimůnek et al., 2008). The modeled timeseries were validated using the 
available sensor data.
The Hydrus-1D model was set up using the Phydrus python package (Collen-
teur et al., 2019) using the BOFEK (Heinen, 2021) soil profiles for the specific 
location with the corresponding soil physical parameters from the Staringreeks 
(Heinen et al., 2020). The column was simulated to a depth of 120 cm with the 
sensors situated at a depth of 15 and 30 cm. To simulate the flow of water in 
the soil, the soil hydraulic model of van Genuchten (van Genuchten, 1980) is 
used. The soil surface has been set to an atmospheric boundary condition with 
surface runoff. The lower boundary of the modeled soil column was set to be 
free draining and, therefore, it experiences no influence of the groundwater 
or capillary rise of soil moisture. The column was assumed to have a standard 
grass vegetation on top and used meteorological forcing from the nearest KNMI 
station.

The model results were validated using sensor measurement data (2019-2024). 
Performance was evaluated using the Pearson correlation coefficient as we have 
no interest in the bias of the model due to the statistical nature of the index. To 
further improve the model, the use of different BOFEK-profiles was explored for 
each location. When the model performance was considered satisfactory (Pears-
on correlation > 0.7) the index was calculated. This threshold was arbitrarily set 
for the purpose of this project, taking into account the model performance of 
previous models (Heinen et al., 2022). 

Figure 3    Soil moisture measurement setup, adjusted from van Dam and Gooren (2021).
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The model results were validated using sensor measurement data (2019-
2024). Performance was evaluated using the Pearson correlation coefficient 
as we have no interest in the bias of the model due to the statistical nature 
of the index. To further improve the model, the use of different BOFEK-
profiles was explored for each location. When the model performance was 
considered satisfactory (Pearson correlation > 0.7) the index was 
calculated. This threshold was arbitrarily set for the purpose of this project, 
taking into account the model performance of previous models (Heinen et 
al., 2022).  
 
WALRUS model 
Similar to SSMI, the SSI also requires at least 30 years of data to ensure that 
the distribution of streamflow is well-represented. However, the observed 
streamflow time series for the Hupsel Brook catchment contains missing 
values. To address this issue, we utilized the WALRUS model (Brauer et al., 
2014) to simulate streamflow at the Hupsel Brook outlet. WALRUS was 
chosen because it has been developed for free-drainage lowland areas, 
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WALRUS model
Similar to SSMI, the SSI also requires at least 30 years of data to ensure that the 
distribution of streamflow is well-represented. However, the observed stream-
flow time series for the Hupsel Brook catchment contains missing values. To 
address this issue, we utilized the WALRUS model (Brauer et al., 2014) to simu-
late streamflow at the Hupsel Brook outlet. WALRUS was chosen because it has 
been developed for free-drainage lowland areas, making it suitable for this stu-
dy. We set up WALRUS using daily meteorological data (e.g., precipitation and 
reference evapotranspiration) obtained from the Hupsel Brook weather station. 
The catchment characteristics, such as soil type, were obtained from Brauer et 
al. (2014). Then, WALRUS was auto calibrated to obtain the optimal parameter 
set. The calibration was performed over the period of 1994 to 2024 (for more 
details, see Altayeb 2024). Model performance was quantified with the Nash 
Sutcliffe efficiency (NSE), Percent of Bias (PBIAS), and Root Mean Square Error 
(RMSE).

SSMI and SSI calculations
Standardized indices like SSMI and SSI quantify the state of the hydrological 
system by comparing current conditions to historical values. The index shows 
the deviation of the hydrological variable from normal conditions and it classi-
fies the extremity of events. 
With the indices, both wet and dry conditions can be investigated, where posi-
tive values indicate wet conditions, and negative values indicate dry conditions 
(see Table 1). These indices also track the intensity, duration, spatial extent, 
and propagation of drought over time across different locations. 

Table 1    Standardized index values for drought classification. Index values, the associated 

category, and the probability of occurrence.

Index value Category Probability

2.00 or more Extremely wet 2.3%

1.50 to 1.99 Severely wet 4.4%

1.00 to 1.49 Moderately wet 9.2%

0 to 0.99 Mildly wet 34.1%

0 to -0.99 Mild drought 34.1%

-1.00 to -1.49 Moderate drought 9.2%

-1.50 to -1.99 Severe drought 4.4%

-2.00 or less Extreme drought 2.3%

For calculating the indices, we use a methodology similar to the SPI. In general, 
calculating the index involves three main steps: First, the average is taken for 
data over the time scale of interest to filter out the effect of a single extreme 
event. Second, a statistical distribution is fitted to data. Lastly, the fitted values 
are transformed to a standard normal distribution with a zero mean and one 
standard deviation to get the index value (see Figure 4) (Tijdeman et al., 2020). 
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In the present study, we calculated SSMI and SSI as follows: First, we used Hy-
drus-1D and WALRUS to generate 30 years of simulations data that was then 
averaged using a moving average window for different time scales (10, 30, and 
90 days). Then, we fitted the distributions to the data. For SSMI, the parametric 
normal, beta, gamma, and Pearson3 distributions as well as the non-parametric 
kernel density estimation approach were evaluated. It is important to critically 
evaluate the distributions throughout the year as they may differ as shown in 
Figure 5. While, for the SSI, Generalized Extreme Value, Generalized Logistic, 
Pearson Type III, and Tweedie distribution were evaluated. The selection of 
these distributions reflects the variability and characteristics of both the soil 
moisture and streamflow data, which often exhibit non-normal and highly vari-
able behavior depending on local climatic and hydrological conditions. We used 
the Shapiro-Wilk test (Shapiro & Wilk, 1965) to assess whether the calculated SSI 
and SSMI datasets were normally distributed or not based on a null hypothesis 
(p-value > 0.05). This test was applied to daily SSMI and SSI over a 30-year peri-
od. Specifically, for each calendar day, we created a time series consisting of 30 
values. The Shapiro-Wilk test was then conducted for each day, yielding a series 
of p-values. To compare the distributions, we calculated the rejection rate as 
the proportion of days with p-values less than 0.05. 

The SSI approach has recently been extended to calculate and visualize this 
index in an operational setting for 40 streamflow measurement locations ma-
naged by the waterboards Brabantse Delta, De Dommel, Limburg, Rijn en IJssel, 
and Vallei en Veluwe (Terink et al., 2024).

Results
Soil moisture
The final model results show a sufficient model result (r>0.7) for the locations 
Wijhe, Barneveld, Lettele, Harreveld, and Eibergen. Figure 6 compares the model 
results for the Eibergen location in the Hupsel catchment with the measurements. 
From the figure, it is apparent that the Hydrus-1D model does not accurately re-
present the values measured by the sensors. An explanation for this may be that 

Figure 4    Overview of calculation steps for calculating standardized indices based on aggregated data.
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Results 
 
Soil moisture 
The final model results show a sufficient model result (r>0.7) for the 
locations Wijhe, Barneveld, Lettele, Harreveld, and Eibergen. Figure 6 
compares the model results for the Eibergen location in the Hupsel 
catchment with the measurements. From the figure, it is apparent that the 
Hydrus-1D model does not accurately represent the values measured by the 
sensors. An explanation for this may be that the use of generalized BOFEK 
soil profiles does not capture the spatial variability of the measurement 
location. For the final index, however, it is more useful if it indicates the 
value for a larger area rather than a point measurement. Moreover, the 
model assumption of a freely draining soil profile (no capillary rise) and the 
use of uncalibrated sensors influence the model results.  
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the use of generalized BOFEK soil profiles does not capture the spatial variability 
of the measurement location. For the final index, however, it is more useful if it 
indicates the value for a larger area rather than a point measurement. Moreover, 
the model assumption of a freely draining soil profile (no capillary rise) and the 
use of uncalibrated sensors influence the model results. 

Figure 5    Soil moisture distributions on the first day of each month over the year based on a 

period of 30 years.

Figure 6    Modeling results (in blue) compared to the soil moisture measurements (in black) for 

the location in Wijhe.
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The addition of groundwater and capillary rise to the model may improve the 
results for some of the locations. For the index calculation, we are not intere-
sted in the exact value that the model produces. The probabilistic nature of the 
index causes any systematic bias to be ignored when calculating a final index. 
The standard bias observed in Figure 6 does not influence the final index value.

For each distribution, the rejection rate indicated the percentage of days for 
which the distribution was unsuitable. The Pearson3 distribution has the best 
performance, only exceeding a rejection rate of 10% once.

The Kernel density estimation approach was solely fitted based on the data and 
will, therefore, always produce a good fit to the data. The use of this approach 
was compared to the parametric approaches by assessing the spread in the mi-
nimum value. The spread in minimum values can be compared to the expected 
spread of the index to assess if the index behaves as expected. Kernel density 
estimated overestimates the minimum index values, while the Pearson3 was in 
the right range. The different calculated indices using these two methods are 
shown in Figure 7. In this figure, it can be seen that the index calculated with 
the Pearson3 methods has unexplained negative peaks that can be explained 
by an unsuitable distribution at the specific day. On the other hand, the Kernel 
Density Estimation underestimates the positive peaks compared to the results 
from the Pearson3 distribution. The final index time series was created using 
the Kernel Density Estimation approach and can be found in Figure 10.

Figure 7    Calculated index time series for the monitoring location near Wijhe. The blue line indicates the 

index for which the distributions are described with the Pearson3 distribution. For the orange line, the distri-

bution is described with Kernel Density Estimation (KDE).

 

interested in the exact value that the model produces. The probabilistic 
nature of the index causes any systematic bias to be ignored when 
calculating a final index. The standard bias observed in Figure 6 does not 
influence the final index value. 
 
For each distribution, the rejection rate indicated the percentage of days 
for which the distribution was unsuitable. The Pearson3 distribution has the 
best performance, only exceeding a rejection rate of 10% once. 
 
The Kernel density estimation approach was solely fitted based on the data 
and will, therefore, always produce a good fit to the data. The use of this 
approach was compared to the parametric approaches by assessing the 
spread in the minimum value. The spread in minimum values can be 
compared to the expected spread of the index to assess if the index behaves 
as expected. Kernel density estimated overestimates the minimum index 
values, while the Pearson3 was in the right range. The different calculated 
indices using these two methods are shown in Figure 7. In this figure, it can 
be seen that the index calculated with the Pearson3 methods has 
unexplained negative peaks that can be explained by an unsuitable 
distribution at the specific day. On the other hand, the Kernel Density 
Estimation underestimates the positive peaks compared to the results from 
the Pearson3 distribution. The final index time series was created using the 
Kernel Density Estimation approach and can be found in Figure 10. 

 
Figure 6: Calculated index time series for the monitoring location near Wijhe. The blue line 
indicates the index for which the distributions are described with the Pearson3 distribution. 
For the orange line, the distribution is described with Kernel Density Estimation (KDE). 

 

Streamflow 
 
We calibrated the WALRUS model from 1995 to 2024 to generate the best 
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Streamflow
We calibrated the WALRUS model from 1995 to 2024 to generate the best pa-
rameter set, and we simulated the streamflow for the Hupsel Brook catchment. 
The results showed that WALRUS performed well in simulating the streamflow 
at Hupsel outlet, resulting in an NSE of 0.75, RMSE of 0.65 mm/d and PBIAS of 
2%. To validate the model performance under different hydrological conditions, 
we selected one dry year (2018) and one wet year (2010). Using the calibrated 
parameter set, we evaluated the model’s performance for both years. The va-
lidation results indicated that the model performs well for both the dry (NSE 
of 0.83 (Figure 8)) and wet conditions (NSE of 0.8 (Figure 8)). Using the simu-
lated streamflow, we calculated the SSI for different timescales of 10, 30, and 
90 days using the four selected distributions (Tweedie, Pearson3, Generalized 
logistic and Generalized extreme value). Based on the Shapiro wilk test, we se-
lected the distribution that resulted in the lowest rejection rate, which was the 
Generalized extreme value distribution.

Having long streamflow records at the Hupsel catchment allowed for a detailed 
comparison between the Standardized Streamflow Index (SSI) calculated from 
both simulated and observed values across various timescales (10, 30, and 90 
days) as illustrated in Figure 9. The analysis showed that simulated SSI values 
tended to overestimate negative SSI, especially during extreme droughts like 
those in 2018. In addition, the simulated SSI displayed more fluctuation than 
the observed SSI. However, despite these differences, the simulated values ge-
nerally captured the overall variation well, particularly for SSI-1 and SSI-3.

Figure 8    WALRUS model validation results for the wet year of 2010 and the dry year of 2018.
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Figure 7: WALRUS model validation results for the wet year of 2010 and the dry year of 2018. 
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Drought propagation
The addition of the standardized soil moisture index and the standardized 
streamflow index to the Drought Portal filled the remaining gaps and provided 
indices for the different stages of drought. By comparing the indices at the 
different stages of drought, we obtained an overview of the propagation of 
drought through the system. Figure 10 shows the different indices for measu-
rements within the Hupsel catchment. The peak in SPI and SPEI toward an index 
value of 0, which was observed in fall 2018, shows that the situation is back 
to normal from a meteorological point of view. The other index values show 
that the system, however, is still in a state of drought. This indicates that the 
systems need more precipitation and/or time to go back to a normal state; this 
illustrates the lag and memory of the system, as one would expect from the 
aspect of hydrology, and demonstrates the need for different indices.

 

 
 

Figure 8: Comparison between the SSI values calculated using the observed streamflow values 
(filled) and the simulated values calculated using GEV distribution and for different averaging 
timescales (10 days for SSI actual, 30 days for SSI-1, and 90 days for SSI-3). 
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indices for measurements within the Hupsel catchment. The peak in SPI and 
SPEI toward an index value of 0, which was observed in fall 2018,  

Figure 9    Comparison between the SSI values calculated using the observed streamflow values 

(filled) and the simulated values calculated using GEV distribution and for different averaging 

timescales (10 days for SSI actual, 30 days for SSI-1, and 90 days for SSI-3).
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Figure 9: Standardized indices showing the different types of droughts within the Hupsel 
Brook catchment (using a 30 day averaging timescale). 

 
shows that the situation is back to normal from a meteorological point of 
view. The other index values show that the system, however, is still in a 
state of drought. This indicates that the systems need more precipitation 
and/or time to go back to a normal state; this illustrates the lag and 
memory of the system, as one would expect from the aspect of hydrology, 
and demonstrates the need for different indices. 

  

Figure 10    Standardized indices showing the different types of droughts within the Hupsel 

Brook catchment (using a 30 day averaging timescale).
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Discussion
For Hydrus-1D, the influence of groundwater is neglected, and a free-draining 
profile is assumed. In this way, the index is solely influenced by meteorological 
forcing. It is recommended to add the groundwater influence to the model to 
improve model performance and calculate indices that are more in line with ob-
served field conditions. Due to the probabilistic nature of the index, systematic 
biases in the Hydrus-1D results are ignored when calculating the final SSMI va-
lues. Pearson’s correlation is used to assess model goodness-of-fit. A threshold 
of 0.7 is set arbitrarily. It is recommended to further investigate this threshold 
and to develop additional metrics to evaluate the model performance in an ope-
rational setting.

The WALRUS model performed well for the dry and wet periods. However, it 
uses preprocessing functions to linearly interpolate missing streamflow data, 
including during calibration. However, in cases with long periods of missing 
data, as in this study, this interpolation can reduce the accuracy of streamflow 
simulations. It has been implemented in the recent operational setting of the 
SSI calculation and visualisation (Terink et al., 2024).

Deciding what distribution is the best fit to derive the soil moisture and the 
streamflow indices is not straightforward. Although you can assess the distribu-
tion fit and the statistical behavior of the chosen distribution, an objective com-
parison between the parametric and non-parametric methods is difficult. If you 
solely focus on parametric distributions, the best way to compare the distribu-
tions is to compare the goodness-of-fit indicated by the Shapiro-Wilk test. For 
SSMI, the Pearson 3 distribution showed to be the best fit. You can, however, 
argue whether it is appropriate to fit a unimodal distribution to data that tends 
to show bimodal or multimodal characteristics (Vidal et al., 2010), which is also 
highlighted in Figure 7. The main advantage of the non-parametric Kernel Den-
sity Estimates (KDE) is that it offers more flexibility and can describe the multi-
modality of the distribution (Carrão et al., 2016; Tijdeman et al., 2020). Some 
disadvantages, however, should be carefully considered. The KDE approach can 
be prone to over- or under-smoothing and it has difficulty handling data that 
goes beyond the range of observations. This means that it has difficulty assig-
ning the right probability to the most extreme values (Tijdeman et al., 2020). 
These differences are also highlighted in Figure 7. The above-mentioned disad-
vantage of KDE is one reason as to why it has not been used in the SSI calcula-
tion. Moreover, for the standardized streamflow index (SSI), the sensitivity of 
the index to the chosen method and distribution highlights the complexity of 
selecting an appropriate approach for drought monitoring and characterization 
(Tijdeman et al., 2020). While non-parametric methods often provide a better 
fit for SSI calculations, they tend to underestimate the magnitude and spread 
of negative SSI values and exhibit higher uncertainty bounds (Tijdeman et al., 
2020). This trade-off underscores the need for the careful consideration of both 
parametric and non-parametric methods in drought analysis, but nonparametric 
methods may be considered less suitable for SSI calculation in drought analysis 
due to their high uncertainty (Tijdeman et al., 2020).
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The user should carefully evaluate the different evaluation criteria and choose 
based on what is most suitable for the application at hand as, objectively, no 
single best method can be selected. The most important thing is that the end 
user is correctly informed about the strengths and weaknesses of the chosen 
method so that the limitations of the final index are clear (Tijdeman et al., 
2020). 

Conclusions
This study demonstrates that a simple Hydrus 1D model, based on local BOFEK 
soil profiles and driven solely by meteorological data, can effectively simulate 
historical time series for at least five of the investigated locations. Furthermore, 
the WALRUS model proved effective in simulating streamflow for the Hupsel 
catchment. Among the tested distributions, KDE appeared to be the most suita-
ble option for SSMI. While, for SSI, Generalized Extreme Value distribution is the 
best fit.

Implementing the SSMI and SSI in the portal will provide users with a consis-
tent view of the hydrological system’s current state and help explore historical 
trends and spatial characteristics. These indices will support water authorities 
and stakeholders in understanding and responding to various drought impacts, 
including effects on agriculture, ecosystems, and water resources. 
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Samenvatting Nieuwe functionaliteiten voor het droogteportaal: 
gestandaardiseerde indexen voor bodemvocht en afvoer
Voor een goed inzicht in de huidige droogtesituatie en de progressie daarvan, 
is het belangrijk om de verschillende typen droogte in kaart te brengen. In dit 
project testen we een gestandaardiseerde index voor zowel bodemvocht (SSMI) 
als afvoer (SSI) voor het droogteportaal (https://droogteportaal.nl). We maken 
hiervoor gebruik van realtime veldmetingen en modelsimulaties. Voor het bere-
kenen van de SSMI gebruiken we de veldmetingen om een Hydrus-1D-model te 
valideren omdat de tijdreeks van veldmetingen niet lang genoeg is om een index 
op te berekenen. Voor de SSI wordt het WALRUS-model gebruikt om de gaten 
in de afvoerdata te vullen en waar nodig te verlengen. Voor beide indexen wor-
den er verschillende statistische verdelingen geëvalueerd om de best passende 
verdeling voor de data te vinden. De indexen kunnen worden gebruikt om de 
verschillende hydrologische systemen op een uniforme manier te benaderen en 
helpen om keuzes te maken om de impact van droogte te verminderen.
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